Ok

En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies. Ces derniers assurent le bon fonctionnement de nos services. En savoir plus.

07/10/2009

Fonction donnant la longueur d’un segment variable

Ton exercice se termine quand tu as établi que
AM²=4²+x² soit encore AM = racine carré(16+x²)

Pour tout point M placé à une distance x de A tu sais calculer
AM = racine carré (16+x²) ,définie pour tout x variant dans l'intervalle [0;4]

L’équation (du 2e degré, x est au carré)
16+x² = 0 n’a pas de solution réelle.

Quand tu poses l'équation du 2e degré (x est à la puissance 2) 16+x² = un nombre appartenant à l'intervalle [16;32]
tu te demandes comment positionner M correspondant à une longueur choisie de AM dont le carré te sert à renseigner le terme à droite de l'équation .

La longueur de la diagonale du carré = longueur du coté * racine carré de 2 (théorème de la diagonale du carré, une variante de Pythagore), est la longueur AM maximale, correspondant à x=4

4 est la longueur AM minimale correspondant à x = 0

Si je prends par exemple AM=5, en écrivant
AM²=25 = 16+x²
je vais trouver x² = 25-16=9 donc x=3
Mon point M devra être positionné à 3 unité de D pour que AM fasse 5 unités

Quand tu poses 16 + x² = 0 tu te demandes où positionner x pour que la longueur du segment AM soit nulle : c'est impossible que la longueur AM fasse zéro quand M varie de D à C c'est à dire quand x varie de 0 à 4. On a vu au-dessus la plus grande et la plus petite valeur de AM : 4 et 4 * racine de 2

23:07 Publié dans Exercices résolus | Lien permanent | Commentaires (0) | |  del.icio.us | | Digg! Digg |  Facebook | | | |  Imprimer

Les commentaires sont fermés.